Skip to Main Content
Accessibility Overview
webinar register page
Topic
ASTIN Webinar: Multi-state Modeling of Customer Churn
Description
Customer churn, which insurance companies use to describe the non-renewal of existing customers, is a widespread and expensive problem in general insurance, particularly because contracts are usually short-term and are renewed periodically. Traditionally, customer churn analyses have employed models which utilise only a binary outcome (churn or not churn) in one period.
Using multinomial logistic regression (MLR) with a second-order Markov assumption, we demonstrate how multi-state customer churn analysis offers deeper insights into how a policyholder’s transition history is associated with their decision making, whether that be to retain the current set of policies, churn, or add/drop a coverage.
Applying this model to commercial insurance data from the Wisconsin Local Government Property Insurance Fund, we illustrate how transition probabilities between states are affected by differing sets of explanatory variables and that a multi-state analysis can potentially offer stronger predictive performance and more accurate calculations of customer lifetime value (say), compared to the traditional customer churn analysis techniques.
Time
Dec 1, 2022 08:00 AM in
Canberra, Melbourne, Sydney
Webinar is over, you cannot register now. If you have any questions, please contact Webinar host:
Tebo Mabeba
.
×
Share via Email
All fields are required
Your Information
Send to
Message preview
Hi there, You are invited to a Zoom webinar. When: Dec 1, 2022 08:00 AM Canberra, Melbourne, Sydney Topic: ASTIN Webinar: Multi-state Modeling of Customer Churn Register in advance for this webinar: https://us06web.zoom.us/webinar/register/WN_D3ABhCZeShCYwK_CCym2UA After registering, you will receive a confirmation email containing information about joining the webinar. ---------- Webinar Speakers Fei Huang (Senior Lecturer ) Fei Huang is a Senior Lecturer in Risk and Actuaries Studies and Deputy Director (Data and AI Tech) of the UNSW Business AI Lab. Her research focuses on applications of statistical machine learning and ethical AI in both life and general insurance. She has published papers in top-tier actuarial journals and received the inaugural Carol Dolan Actuaries Summit Prize in 2022. Fei teaches statistical machine learning and data science subjects for risk and actuarial applications. She has received multiple education awards including the UNSW John Prescott Award for Outstanding Teaching Innovation and ANU Vice Chancellor’s Award for Teaching Excellence. Fei is a Senior Fellow of Advance HE (SFHEA). Yumo Dong Yumo Dong is a Ph.D. student in the Research School of Finance, Actuarial Studies and Statistics (RSFAS) of the Australian National University. Yumo's research interests focus on multi-state modeling, dependence modeling, and applications of statistical machine learning in insurance
×
Switch Time Zone
Time Zone:
(GMT-11:00) Midway Island, Samoa
(GMT-11:00) Pago Pago
(GMT-10:00) Hawaii
(GMT-9:00) Alaska
(GMT-9:00) Juneau
(GMT-8:00) Vancouver
(GMT-8:00) Pacific Time (US and Canada)
(GMT-8:00) Tijuana
(GMT-7:00) Edmonton
(GMT-7:00) Mountain Time (US and Canada)
(GMT-7:00) Arizona
(GMT-7:00) Mazatlan
(GMT-7:00) Yukon
(GMT-6:00) Winnipeg
(GMT-6:00) Saskatchewan
(GMT-6:00) Central Time (US and Canada)
(GMT-6:00) Mexico City
(GMT-6:00) Guatemala
(GMT-6:00) El Salvador
(GMT-6:00) Managua
(GMT-6:00) Costa Rica
(GMT-6:00) Tegucigalpa
(GMT-6:00) Chihuahua
(GMT-6:00) Monterrey
(GMT-5:00) Montreal
(GMT-5:00) Eastern Time (US and Canada)
(GMT-5:00) Indiana (East)
(GMT-5:00) Panama
(GMT-5:00) Bogota
(GMT-5:00) Lima
(GMT-5:00) Acre
(GMT-4:00) Halifax
(GMT-4:00) Puerto Rico
(GMT-4:00) Caracas
(GMT-4:00) Atlantic Time (Canada)
(GMT-4:00) La Paz
(GMT-4:00) Guyana
(GMT-3:30) Newfoundland and Labrador
(GMT-3:00) Santiago
(GMT-3:00) Montevideo
(GMT-3:00) Recife
(GMT-3:00) Buenos Aires, Georgetown
(GMT-3:00) Greenland
(GMT-3:00) Sao Paulo
(GMT-2:00) Fernando de Noronha
(GMT-1:00) Azores
(GMT-1:00) Cape Verde Islands
(GMT+0:00) Universal Time UTC
(GMT+0:00) Greenwich Mean Time
(GMT+0:00) Reykjavik
(GMT+0:00) Dublin
(GMT+0:00) London
(GMT+0:00) Lisbon
(GMT+0:00) Nouakchott
(GMT+1:00) Belgrade, Bratislava, Ljubljana
(GMT+1:00) Sarajevo, Skopje, Zagreb
(GMT+1:00) Casablanca
(GMT+1:00) Oslo
(GMT+1:00) Copenhagen
(GMT+1:00) Brussels
(GMT+1:00) Amsterdam, Berlin, Rome, Stockholm, Vienna
(GMT+1:00) Amsterdam
(GMT+1:00) Rome
(GMT+1:00) Stockholm
(GMT+1:00) Vienna
(GMT+1:00) Luxembourg
(GMT+1:00) Paris
(GMT+1:00) Zurich
(GMT+1:00) Madrid
(GMT+1:00) West Central Africa
(GMT+1:00) Algiers
(GMT+1:00) Tunis
(GMT+1:00) Warsaw
(GMT+1:00) Prague Bratislava
(GMT+1:00) Budapest
(GMT+2:00) Helsinki
(GMT+2:00) Harare, Pretoria
(GMT+2:00) Sofia
(GMT+2:00) Athens
(GMT+2:00) Bucharest
(GMT+2:00) Nicosia
(GMT+2:00) Beirut
(GMT+2:00) Jerusalem
(GMT+2:00) Tripoli
(GMT+2:00) Cairo
(GMT+2:00) Johannesburg
(GMT+2:00) Khartoum
(GMT+2:00) Kyiv
(GMT+2:00) Chisinau
(GMT+3:00) Nairobi
(GMT+3:00) Istanbul
(GMT+3:00) Damascus
(GMT+3:00) Amman
(GMT+3:00) Moscow
(GMT+3:00) Baghdad
(GMT+3:00) Kuwait
(GMT+3:00) Riyadh
(GMT+3:00) Bahrain
(GMT+3:00) Qatar
(GMT+3:00) Aden
(GMT+3:00) Djibouti
(GMT+3:00) Mogadishu
(GMT+3:00) Minsk
(GMT+3:30) Tehran
(GMT+4:00) Dubai
(GMT+4:00) Muscat
(GMT+4:00) Baku, Tbilisi, Yerevan
(GMT+4:30) Kabul
(GMT+5:00) Yekaterinburg
(GMT+5:00) Islamabad, Karachi, Tashkent
(GMT+5:30) India
(GMT+5:30) Mumbai, Kolkata, New Delhi
(GMT+5:30) Colombo
(GMT+5:45) Kathmandu
(GMT+6:00) Almaty
(GMT+6:00) Dacca
(GMT+6:00) Astana, Dhaka
(GMT+6:30) Rangoon
(GMT+7:00) Novosibirsk
(GMT+7:00) Krasnoyarsk
(GMT+7:00) Bangkok
(GMT+7:00) Vietnam
(GMT+7:00) Jakarta
(GMT+8:00) Irkutsk, Ulaanbaatar
(GMT+8:00) Beijing, Shanghai
(GMT+8:00) Hong Kong SAR
(GMT+8:00) Taipei
(GMT+8:00) Kuala Lumpur
(GMT+8:00) Singapore
(GMT+8:00) Perth
(GMT+9:00) Yakutsk
(GMT+9:00) Seoul
(GMT+9:00) Osaka, Sapporo, Tokyo
(GMT+9:30) Darwin
(GMT+10:00) Vladivostok
(GMT+10:00) Guam, Port Moresby
(GMT+10:00) Brisbane
(GMT+10:30) Adelaide
(GMT+11:00) Canberra, Melbourne, Sydney
(GMT+11:00) Hobart
(GMT+11:00) Magadan
(GMT+11:00) Solomon Islands
(GMT+11:00) New Caledonia
(GMT+11:00) Lord Howe IsIand
(GMT+12:00) Kamchatka
(GMT+12:00) Fiji Islands, Marshall Islands
(GMT+13:00) Auckland, Wellington
(GMT+13:00) Independent State of Samoa
×
Continue to PayPal
Click to Continue
×
×
Upcoming Meetings
Would you like to start this meeting?
Would you like to start one of these meetings?
View more...