webinar register page

Enhancing Cryopreservation via Control of Ice Formation
SAND-BASED SERUM-FREE LOW-CRYOPROTECTANT CRYOPRESERVATION OF HUMAN INDUCED PLURIPOTENT STEM CELLS
Dr. Xiaoming "Shawn" He - Professor, University of Maryland, United States

We developed a novel sand-based approach inspired by nature to enhance cell/tissue cryopreservation. This is demonstrated by cryopreserving human induced pluripotent stem cells (hiPSCs) as 3D microspheres with no serum, minimized cryoprotectant, and high cell survival. Furthermore, the cryopreserved hiPSCs retain high pluripotency and functions judged by pluripotency marker expression, cell cycle, and capability of differentiation into all the three different germ layers. This novel sand-mediated serum-free low-cryoprotectant cryopreservation method may greatly facilitate the convenient and ready availability of high-quality iPSCs and possibly many other types of cells/tissues for the emerging cell-based medicine.

ADVANCED MULTISCALE BIOPRESERVATION THROUGH ICE MANIPULATION
Dr. Haishui Huang - Professor, Xi'an Jiaotong University | Associate Director, Bioinspired Engineering and Biomechanics Centre

Ice formation is a major damaging factor in the low temperature preservation of multiscale mammalian biospecimens, and its precise manipulation is a critical challenge in the development of advanced biopreservation technologies. This seminar will discuss three new preservation methods, “pre-dehydration + ice seeding”, “local vitrification”, and “deep supercooling”, through controlling the nucleation, proliferation, and distribution of ice crystals during low-temptation storage.

Sep 12, 2022 09:30 AM in Eastern Time (US and Canada)

Webinar logo
Webinar is over, you cannot register now. If you have any questions, please contact Webinar host: .